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We describe the effect of geometric phases induced by either classical or quantum electric fields acting on
single electron spins in quantum dots in the presence of spin-orbit coupling. On one hand, applied electric
fields can be used to control the geometric phases, which allows performing quantum coherent spin manipu-
lations without using high-frequency magnetic fields. On the other hand, fluctuating fields induce random
geometric phases that lead to spin relaxation and dephasing, thus limiting the use of such spins as qubits. We
estimate the decay rates due to piezoelectric phonons and conduction electrons in the circuit, both representing
dominant electric noise sources with characteristically differing power spectra.
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I. INTRODUCTION

Recent demonstrations of coherent single-electron spin
control and measurement in semiconductor quantum dots1–3

represent milestones on the way to quantum-state engineer-
ing with spin qubits.4 In addition, work on coherent spin
transport in nanostructures5–8 has revealed new possibilities
for next-generation spintronic devices. The key behind these
emerging technologies is the long spin coherence time in
semiconductor materials.

The standard technique for addressing and manipulating
spins in semiconductors is electron spin resonance �ESR�
controlled by external ac magnetic fields.3 Alternatively, ef-
fective internal magnetic fields can be generated via the spin-
orbit �SO� interaction by applied electric fields. Proposals for
coherent control of confined electron spins based on this
combination have been put forward,9–13 and experimental
progress has been reported.14,15 At the same time, SO inter-
action makes the electron spin sensitive to the electric noise
ubiquitous in typical solid state environments.16,17 The com-
bination of both provides an important mechanisms by which
electron spins decay and lose coherence.18–23 Such electric
field fluctuations are generated, e.g., by lattice vibrations, but
in low magnetic fields, the Nyquist noise in the electrodes
may be dominant.23

The details of the spin-orbit mediated interaction between
the electric field and the electron spin hide some interesting
twists. As we discuss below, in suitable time-dependent elec-
tric fields, the spin of an electron confined in a quantum dot
acquires a non-Abelian geometric phase �a generalized Berry
phase�. On the one hand, this geometric quantum-state evo-
lution allows for new spin manipulation strategies purely
controlled by electric fields. In comparison to the alternative,
ESR manipulation by ac magnetic fields, geometric spin ma-
nipulation is potentially more robust since it is not affected
by gate timing errors and certain control voltage inaccura-
cies.

On the other hand, in fluctuating electric fields the accu-
mulation of random geometric phases leads to spin relax-
ation and decoherence for low and even vanishing magnetic

fields,23 predominantly induced by high-frequency noise,
���kBT��BB. This saturation of the spin decay rate at low
fields has been overlooked in the literature,19,24,25 although a
similar connection had been discussed for free electrons in
the presence of disorder scattering.26 In comparison to the
previously discussed spin-orbit mediated mechanisms,18,27

the geometric spin decay is of higher order in the electric
field. It requires a minimum of two independent noise
sources coupled to two noncommuting components of the
electron spin, whereby the non-Abelian character of spin ro-
tations �properties of the SU�2� group� becomes relevant.

The present paper is devoted to a detailed study of the
spin evolution of a confined electron in a time-dependent
electromagnetic environment. It extends earlier work23

which is based on a perturbative approach that allows han-
dling quadrupolar and octupolar fluctuations but is restricted
to small and adiabatic electric fields. Here, we develop alter-
native adiabatic methods, which allow describing large elec-
tric fields and corresponding displacements.

To begin with, we consider in Sec. II A a “semiclassical”
electron moving along a fixed trajectory. This limit describes
the situation where an electron is confined in a narrow quan-
tum dot potential which is shifted by applied classical elec-
tric fields. The spin-orbit interaction, which is treated in lead-
ing order in the small parameter x0 / lSO �dot size over SO
length�, induces a geometric spin precession tied to the elec-
tron’s motion. We illustrate how electric fields can be used to
manipulate the spin state via the SO interaction. We further
provide a qualitative picture for geometric dephasing �Secs.
II B and II C�, if the fields are classical fluctuating fields
completely characterized by their power spectrum. A more
rigorous analysis based on a fully quantum-mechanical treat-
ment of the electromagnetic field follows in later sections.

Next, in Sec. III A, we treat the confined electron fully
quantum mechanically taking into account the spin texture of
the confined orbitals in a �parabolic� quantum dot. This ap-
proach allows us to study larger dots with intermediate and
high values of x0 / lSO. Spin-dressing effects in larger dots
lead to a renormalization of the g factor that also influences
the geometric spin evolution. We first consider the effect of a
classical applied field and then generalize to the case where
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also the electromagnetic field is treated quantum mechani-
cally within a path integral approach. This method, presented
in Sec. III B, allows us to compute the dephasing and relax-
ation rates of the electron spin by means of a systematic
diagrammatic perturbation theory.

In Sec. IV, we present our results for the spin relaxation
and decoherence rates in semiconducting quantum dots. We
find that at low temperatures and low magnetic fields, B
�1 T, Ohmic fluctuations originating from the electrodes
dominate over the phonon effects in their infuence on the
spin relaxation.23 This is simply due to the fact that the spec-
trum of excitations of a metallic electrode is much denser
than that of phonons at low energies. At still lower magnetic
fields and temperatures, however, the dominant mechanism
leading to relaxation is the accumulation of random geomet-
ric phases. This leads to a saturation of the decay rates at
B=0. Both features are included in the data shown in Fig. 1
and compared to previous predictions. Further results includ-
ing the temperature dependence under typical experimental
conditions are presented in Sec. IV.

Finally, in Sec. V, we study an electron in an array of
quantum dots and show that in the presence of SO interac-
tion, arbitrary spin rotations can be reached by a series of
coherent electron tunneling processes in a multidot geometry.
We discuss the possibility to use such multidot systems for
geometric electron spin manipulations.

II. GEOMETRICAL SPIN EVOLUTION IN A
SEMICLASSICAL PICTURE

A. Geometric phases and spin rotations

Geometrical phases, introduced in the pioneering work of
Berry,28 describe how a quantum system in a nondegenerate
state evolves when adiabatically driven around a closed loop
in a control parameter space. Apart from a dynamical phase,

depending on the energy and elapsed time, the state acquires
a contribution, called the Berry phase, that only depends on
the geometry of the loop in parameter space. An important
extension of the Berry phase covers the case when the initial
state belongs to a degenerate subspace.29 Then, the geomet-
ric phase is replaced by a non-Abelian unitary transformation
of the initial state within the degenerate subspace, and again,
this unitary transformation depends only on the geometry of
the loop.

This non-Abelian generalization of the Berry phase is of
direct relevance for an electron confined in a quantum dot:
Time reversal symmetry in the absence of a magnetic field
implies that the spectrum of a quantum dot is a collection of
time-reversed Kramers doublets even in the presence of spin-
orbit interaction. In the absence of SO coupling, these states
correspond to pure spin states. In the general case, the dou-
blets persist, and we call them pseudospin states.

The adiabatic variation of the position �and possibly
shape� of the potential confining the electron is described by
a time-dependent Hamiltonian H�t�. Adiabaticity ensures that
an electron which at time t=0 is in the ground state doublet
remains within the corresponding subspace of instantaneous
ground states of H�t�. The adiabatic time evolution thus ap-
pears as a non-Abelian SU�2� transformation within the
ground state doublet.29 In the presence of spin-orbit cou-
pling, the unitary transformation results in a geometric spin
rotation, which only depends on the trajectory of the electron
in real space.

To illustrate the geometric spin rotation in more detail, we
consider a two-dimensional electron gas �2DEG�, assumed to
be grown along the �001� direction. An electron in the 2DEG
experiences a spin-orbit coupling which takes the form ��
=1, x axis along the �100� direction�

HSO = ��p̂y�̂x − p̂x�̂y� + ��p̂y�̂y − p̂x�̂x� =
1

m
p̂�SO

−1 �̂ . �1�

Here, p̂ denotes the momentum of the electron in the xy
plane of the 2DEG and �̂ /2 is the spin operator. The Rashba
��� and linear Dresselhaus ��� couplings can be lumped into
the spin-orbit tensor �SO,

�SO
−1 � m�− � − �

� �
� . �2�

An implicit summation over the x ,y coordinates is assumed,
i.e., p̂�SO

−1 �̂=	�	=x,yp̂��
SO
−1 ��	�̂	. The tensor �SO sets the

scale for the spin-orbit length lSO�
�det �SO�
= �m
��2−�2��−1, which defines the typical length scale of
spin textures. In typical GaAs /AlGaAs semiconductor het-
erostructures, we have lSO�1–5 �m.30

We further assume that by lateral structuring of the 2DEG
a parabolic quantum dot, V�r̂�= 1

2m�0
2r̂2, is created with en-

ergy scale �0 related to the orbital size x0=1 /
m�0. Typical
dot sizes are in the range x0�30–100 nm. Hence, x0 / lSO is
usually small, of the order of 0.1–0.01. The electron is as-
sumed to be strongly confined in the ground state of the
potential. By applying electric fields �modifying the confin-
ing potential�, we move the dot and the electron along a
trajectory RC�t�.

FIG. 1. Spin relaxation and decoherence rates in semiconducting
quantum dots. Results of the present work �solid lines� are com-
pared to those of Ref. 21 �dashed lines�, where the effect of piezo-
electric phonons is analyzed to second order in the coupling to
piezoelectric phonons. We find that geometric dephasing �evaluated
to fourth order� leads to a saturation at low magnetic fields. Devia-
tions between both results at intermediate field values are mainly
due to the Nyquist noise of the conduction electrons. At higher
magnetic fields �not shown�, the results coincide. Parameters corre-
spond to a parabolic quantum dot in GaAs with �0=5 K at T
=100 mK.
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In the considered limit, x0 / lSO�1, the degenerate doublet
of states of the confined electron simply differ in the spin
orientation. Equation �1� then implies that the confined spin
experiences an effective magnetic field, HSO=BSO�t� · �̂, with
BSO= 1

m 
p̂��SO
−1 . For a strongly confining potential, we have


p̂��mṘC. Therefore, the induced spin evolution is described
by31

Uad = T exp�− i�
0

t

dtṘC�SO
−1 �̂� = P exp�− i�

C
dRC�SO

−1 �̂� ,

�3�

with T and P denoting time- and path-ordering operators,
respectively. The subscript “ad” refers to the constraint of

adiabatically slow paths, �ṘC��x0�0, which guarantees that
the evolution affects the electron spin but does not induce
transitions to excited dot states. Clearly, Uad depends only on
the geometry of a given path C itself, not on the time depen-
dence of RC. As we shall show in Sec. III A, this result can
be generalized to larger parabolic dots for which spin texture
effects are important. The main difference in that case is that

�SO
−1 is replaced by a renormalized tensor �̃SO

−1 .
In order to visualize the spin rotation described by Eq. �3�,

it is instructive to use the connection between SU�2� and
SO�3� rotations. The change of the orientation of a sphere
rolling on a plane along a path RC� is characterized by a
rotation operator,

Usph = P exp�− i�
C�

dRC��sph
−1 Â� , �4�

�sph
−1 =

1

R0
� 0 1

− 1 0
� , �5�

where the components of Â denote the standard SO�3� gen-
erators. Comparing Eqs. �3� and �4� and choosing the radius
of the sphere to be R0� lSO /2, we note that a spin rotation
Uad associated with a path RC maps onto a rotation of the
sphere rolling along a trajectory RC��t��2RC�t��sph �see Fig.
2�. If only Rashba coupling is present then the paths C and
C� have the same shape. In general, if also Dresselhaus cou-
pling is present, then C and C� have different shapes, but the
qualitative analogy persists.

In a 2DEG, with both Rashba and Dresselhaus couplings
present, the change of the spin orientation induced by mov-
ing the confined electron along a straight line depends on the
direction of trajectory relative to a crystal axis. The distance
to perform a spin flip is strongly anisotropic for ���, being
enhanced in the �110� direction. This property is illustrated in
Fig. 2�b�.

B. Spin manipulation and spin relaxation

To illustrate how the geometric phase evolution given by
Eq. �3� can be used to manipulate the spin state, we consider

FIG. 2. �Color online� �a� The geometric spin precession due to SO interaction for an electron adiabatically moving within a 2DEG �left�
is equivalent to the changing orientation of a sphere rolling on a plane �right�. Both paths are related in a one-to-one fashion to each other.
�b� The length of a straight path required to perform a spin flip versus the angle of the path relative to a crystal axis for several ratios � /�
with a constant lSO. The area of the ellipses remains constant and equal to �lSO

2 .
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a quantum dot orbiting N times around a closed circular path,
R�t�=R0�cos �t , sin �t ,0�, with period t0=2� /�. The spin-
orbit length is assumed much larger than the loop size, lSO
�R0. For simplicity, we assume pure Dresselhaus coupling.
The resulting spin precession is then described by Uad
= �Uad�t0��N, where the evolution operator of a complete loop
is

Uad�t0� = P exp�− i�
0

2�

d

R0

lSO
��̂x sin 
 + �̂y cos 
�� .

To second order in R0 / lSO, it reduces to

Uad�t0� � 1 − i�z

2�R0
2

lSO
2 � exp�−

i

2

4A�t0�
lSO
2 �̂z� , �6�

where A�t0�=�R0
2 denotes the area enclosed by a loop. As

will be shown in Sec. III A, Eq. �6� is valid for small closed
loops of arbitrary shape. The full time evolution after N
circles can be approximated as

Uad � exp�−
i

2

4A�t�
lSO
2 �̂z� , �7�

where A�t�=NA�t0� is the area swept by N= t / t0 repetitions of
the loop. Obviously, the motion in small closed loops corre-
sponds to an effective static magnetic field, Beff
=4A�t0� / �t0lSO

2 �, pointing along the ẑ direction.
Equation �7� also holds if the trajectory RC�t� is a stochas-

tic variable, typically induced by a fluctuating electric field,
RC�t��E. In this case, the area A�t� in Eq. �7� is a random
variable whose dispersion increases linearly in time, 
A�t�2�
�A0t. Assuming that A�t� is Gaussian distributed, we con-
clude that off-diagonal elements of the spin density matrix
decay as


�̂x� � 
�̂y� � exp�− 8

A�t�2�

lSO
4 � . �8�

Thus, the accumulation of—random—geometric phases
leads to dephasing, even in the absence of external magnetic
fields. The coefficient A0 introduced above depends on the
amplitude and frequency of typical electromagnetic fluctua-
tions, and its proper computation requires a fully quantum-
mechanical treatment of the electromagnetic field,23 re-
viewed in Sec. III B. At this point, we note that the area itself
is proportional to the square of the electric field, E�

2 , with
��T the typical frequency of electromagnetic fluctuations,
and the characteristic time for making a closed loop is
�1 /�. Hence, the geometrical relaxation rate is proportional
to 
��E��4�. For example, for Ohmic fluctuations, we have
�E��2�T2 and consequently the corresponding relaxation rate
scales as �T5. Note that this geometric dephasing is of
fourth order in E and, therefore, requires fourth order pertur-
bation theory in the electromagnetic field.

C. Spin relaxation in a magnetic field

So far, we assumed that no external magnetic field is ap-
plied. Now, we study the relaxation and dephasing of a spin

in an in-plane magnetic field B in the presence of a classical

stochastic field, BSO= ṘC�SO
−1 = �BSOx ,BSOy ,BSOz�, character-

ized by the power spectrum,

Sij��� � �
−�

�

dtei�t
BSOi�t�BSOj�0�� . �9�

The external field B induces a precession of the spin around
its direction with Larmor frequency �B=−g�B �B�, while the
fluctuating field BSO leads to relaxation and dephasing with
rates �1�T1

−1 and �2�T2
−1, given to leading order by the

standard expressions,32–34

�1
�2� = 2S���B� , �10�

�2
�2� =

1

2
�1

�2� + 2S��0� . �11�

Here, S���� and S���� are the spectral densities of the com-
ponents of BSO perpendicular and parallel to B, and the su-
perscript �2�, introduced to distinguish from later extensions,
refers to second order. In case of isotropic random motion of
the dot and purely Rashba �or purely Dresselhaus� spin-orbit
coupling, we have S����=S����=S���. Typically, S��=0�
=0 if the electron remains localized in space since only un-

bounded paths can produce a static BSO� ṘC. Therefore, the
last term of Eq. �11� vanishes in this case and we obtain in
leading order21 T2=2T1.

We can also estimate the relaxation rate induced by the
Berry phase mechanism, which is of higher order than ex-
pressions Eqs. �10� and �11�: The effective magnetic field
generated by the Berry phase term is proportional to Beff

� Ȧ� ṘC�RC, and is perpendicular to the in-plane magnetic
field. The relaxation rate of the spin to fourth order in the
coupling to the stochastic field is proportional to the Fourier
component of the autocorrelation function of this effective
field at frequency ���B,

�1
�4� �� d���2 + �B

2�C���B + �

2
�C���B − �

2
� , �12�

where C� and C� refer to the spectral functions of the com-
ponents RC,� and RC,�, parallel and perpendicular to the in-
plane magnetic field.

Strictly speaking, Eqs. �10�–�12� hold only in the limit
�B��1 ,�2. In the opposite case, �B��1 ,�2, also referred
to as the Zeno regime, the relaxation times T1 and T2 lose
their meaning, and other dissipative rates need to be consid-
ered. Although �1

�2� and �2
�2� vanish fast in the limit �B→0,

�1
�4� saturates and scales to a finite value. This is because the

Berry phase relaxation can also be induced by independent
fluctuations of frequency ��T��B, which have a “beating”
�frequency mismatch� at frequency �B, which is in resonance
with the Larmor spin precession. As a result, for sufficiently
small �B but finite T one always ends up in the Zeno regime,
dominated by the Berry phase term, Eq. �12�.
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III. BEYOND THE SEMICLASSICAL APPROACH

In this section, we provide a fully quantum-mechanical
treatment of a confined electron’s spin. We do this in two
steps: First, we describe quantum mechanically the spin and
orbital state of the confined electron in a classical time-
dependent electric field. Then, we generalize this within a
path integral formalism to include quantum-mechanical fluc-
tuations of the electric field.

A. Adiabatic approach in a classical electric field

1. Motion in a parabolic dot

To be specific, let us first consider an electron in a para-
bolic confining potential V�r̂�= 1

2m�0
2r̂2 with energy scale �0

corresponding to a typical orbital size x0=1 /
m�0. For the
moment, we will assume that the magnetic field is zero. In
the presence of an applied or fluctuating classical in-plane
electric field E�t�, the Hamiltonian takes the form

H�t� =
p̂2

2m
+ V�r̂� + eE�t�r̂ + HSO

=
p̂2

2m
+ V�r̂ − RC�t�� + HSO + C�t� , �13�

with C�t��E2�t� being a time-dependent constant of no rel-
evance, and RC�t��−eE�t� /m�0

2. Thus, the effect of the ho-
mogeneous electric field is to move the center of the poten-
tial along a trajectory, RC�t�. We assume that RC�0�=0. Then,
the Hamiltonians for times t�0 are related by the displace-
ment operator W�t��e−ip̂RC�t�,

H�t� = W�t�H�0�W+�t� + C�t� . �14�

The center of the potential, RC�t�, is our external control
parameter in the language of geometric phases. Equation
�14� allows us to construct the instantaneous eigenstates
���n�t��� of H�t� from the eigenstates ���n�� for RC=0, as
���n�t���= �W�t���n��. The states come in Kramers doublets
with n=0,1 ,2 , . . . and �= ↑ ,↓ denoting their pseudospin ori-
entation. We now introduce the “adiabatic states” or “center
of motion states” as

��̃�t�� � W+�t����t�� . �15�

Here, the state ���t�� satisfies the time-dependent
Schrödinger equation with the Hamiltonian H�t�, while the

adiabatic states ��̃�t�� move together with the dot and satisfy
the equation of motion,

i�t��̃�t�� = �iẆ+�t�W�t� + H�0� + C�t����̃�t�� . �16�

Using the explicit form of the operator W, we thus find, apart
from a trivial overall phase generated by C�t�, that the evo-

lution of ��̃�t�� is described by the effective Hamiltonian,

H̃eff = H�0� − ṘC�t�p̂ , �17�

and the corresponding evolution operator,

Ũ�t� = T exp�− i�
0

t

dt��H�0� −
dRC
dt�

· p̂�� . �18�

Clearly, from the above equations, it follows that if at time
t=0, the electron occupies the ground state Kramers doublet,

i.e., ��̃�t=0��=	����t=0���0�, and the external perturbation

changes sufficiently slowly in time, �ṘC�t� � �x0�0, then the
second term in Eq. �17� cannot generate transitions to the

excited states of H�0�, and ��̃�t�� stays within the ground

state doublet, ��̃�t���	����t���0�. Under these conditions,
the effective Hamiltonian can be approximated as

H̃eff � − ṘC�t�P̂0p̂P̂0, �19�

where P̂0=	� ��0�
�0� is the projector to the ground doublet
of H�0�, and we took the energy of the ground state to be
E0�0. The corresponding adiabatic evolution operator
within the center of motion ground state subspace then reads

Ũad�t� = T exp�i�
0

t

dt�ṘC�t�P̂0p̂P̂0� . �20�

Although not obvious, the spin-orbit coupling plays an
essential role in Eqs. �19� and �20�. As shown in Appendix
A, we have

P0p̂P0 = − �SO
−1 P0�̂P0 = �SO

−1 z�̂ , �21�

where we introduced the nontrivial 2�2 spin-dressing
tensor43 z, which relates the matrix elements of the spin op-
erator to the pseudospin operator �̂. Thus, an adiabatic mo-
tion induces a pseudospin rotation within the ground state
multiplet. Note that the formulas above are not perturbative
in the spin-orbit coupling, and they hold for parabolic dots of
any size compared to the spin-orbit length as long as the
external field fluctuations are adiabatic. Thus, the effects of
strong spin-orbit coupling can be fully taken into account by

replacing �SO
−1 by the dressed spin-orbit tensor �̃SO

−1 ��SO
−1 z, so

that the adiabatic evolution operator becomes

Ũad = P exp�− i�
C

dRC�̃SO
−1 �̂� , �22�

with P being again the path-ordering operator. From Eq.
�22�, it is obvious that the renormalization of the g factor is
also reflected in the renormalization of the relevant spin-orbit

length scales, lSO→ l̃SO�
�det �̃SO�. This renormalized l̃SO
has been shown in Fig. 3 as a function of the ratio x0 / lSO. In
small quantum dots, x0 / lSO�1, one has z�	=��	, and there-

fore, �̃SO
−1 =�SO

−1 , in agreement with the assumptions of Sec. II.

2. Connection with perturbation theory

The preceding discussion relied on the specific model of a
parabolic quantum dot, which enabled us to construct the
instantaneous eigenstates of the Hamiltonian for arbitrarily
large but slowly changing displacements, RC�E. An alter-
native approach to construct Uad that is valid for an arbitrary
shape of the confining potential is to use perturbation theory

GEOMETRIC PHASES IN SEMICONDUCTOR SPIN… PHYSICAL REVIEW B 77, 045305 �2008�

045305-5



in the driving term Hint=eE�t�r̂ of Eq. �13� to determine the
instantaneous eigenstates of H�t�.23 This perturbative ap-
proach has the disadvantage of breaking down for displace-
ments RC comparable to the typical dot size x0. However, in
a conventional setup of single quantum dots defined by litho-
graphic gates, one is usually constrained to small displace-
ments �RC � �x0 such that the perturbative approach remains
useful.

In the absence of external magnetic fields, the perturba-
tion Hint=eE�t�r̂ does not connect states within the same
doublet due to time reversal symmetry. One can then ap-
proximate the lowest energy instantaneous eigenstate ��0�t��
as

��0�t�� � Wpert�t���0� ,

Wpert�t� � 	
�
���0�
�0� + eE��t�	

n�0

��n�
�n�r̂�

E0 − En
� , �23�

where for brevity we have denoted by En the energy of dou-
blet n at time t=0, and ��n����n�0��. Then, the effective
adiabatic Hamiltonian, describing the evolution of the center

of motion wave function ��̃�t��pert�Wpert
+ �t����t�� within the

ground state multiplet, reads

H̃eff �
i

2
e2�Ė � E�z 	

n�0
P0

x̂Pnŷ − ŷPnx̂

�En − E0�2 P0,

where the operators Pn project to the nth doublet state of the
unperturbed Hamiltonian H�0�. Furthermore, in this equa-

tion, we dropped full differential terms involving Ė�E	

+E�Ė	 that give no contribution for closed paths, and we
denoted by x̂ , ŷ the components of the electron position op-
erator. The above expression coincides with the B=0 limit of
the results obtained previously using a more general pertur-
bative approach in Ref. 23.44 Treating the general case, B
�0, within this approach requires some care since the ap-
propriate perturbation theory is quasidegenerate.23,35

While it is not obvious, the above perturbation expansion
approach and the displacement operator results presented in
the previous section are equivalent. Due to the slightly dif-
ferent choice of the transformation W+�t�, the two ap-
proaches yield different adiabatic evolution operators, how-
ever, both Hamiltonians describe the same physical
pseudospin precession, and physical observables are inde-
pendent of this choice of basis. To illustrate this, let us com-

pare the two matrices Ũad after a path that starts and ends at
the origin. For a closed path RC�t�, the perturbative approach
yields a pseudospin transformation that can be expressed as

Ũad
pert = P exp�−

i

2x0
2�

C
�dRC � RC�zCxy

pert · �̂� ,

Cxy
pert · �̂��� = i

�0
2

x0
2 	

n�0


�0�x̂Pnŷ − ŷPnx̂��0��
�En − E0�2 . �24�

As we show in Appendix A, for the particular case of a
parabolic dot, sum rules imply that Cxy

pert simplifies to

Cxy
pert · �̂��� = − ix0

2
�0�p̂xP0p̂y − p̂yP0p̂x��0�� . �25�

On the other hand, the exact displacement operator ap-
proach of the previous section yields

Ũad
par = P exp�i�

C
dRC · P0p̂P0� . �26�

For a closed path with a small enclosed area, we can approxi-
mate this expression by expanding to second order in the
exponent and reexponentiating as

Ũad
par = P exp�i�

C
�dRC � RC�z� �27�

� �
i

2
�P0p̂xP0p̂yP0 − P0p̂yP0p̂xP0�� . �28�

Equations �24�, �28�, and �25� imply that both approaches
yield identical results. Furthermore, in the case of a parabolic

dot, we can show using the alternative form for Ũad �Eq.
�22�� that for small closed paths, the evolution operator Uad
of the unshifted states ���t�� is approximately given as

Uad � Ũad = exp�−
i

2

4A

l̃SO
2

�̂z� , �29�

where A= 1
2�C�dRC�RC�z is displacement area spanned by

the path. This generalizes the semiclassical result of the pre-
vious section to the case of arbitrary spin-obit coupling.

B. Treating the electromagnetic field quantum
mechanically

In the first part of this section, we assumed that the time-
dependent electric field acting on the electron is classical.
However, if the typical frequency of the field reaches the
temperature, then the electric field must be treated quantum

FIG. 3. �Color online� The dressed spin-orbit length l̃SO as a
function of the typical orbital size x0=
1 /m�0 for different ratios
� /�. Exchanging � and � yields identical curves
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mechanically. To treat the quantum fluctuations of the elec-
tromagnetic field, we shall employ a hybrid formalism,
where we describe the fluctuations of the electromagnetic
field within the path integral approach, while the quantum
dot shall be treated within an operator formalism. Here, we
only summarize the results; the details of the calculation are
presented in Appendix B.

For simplicity, we consider an electron spin in a parabolic
quantum dot and dipolar electric fields as in Sec. III A 1.
Then, the adiabatic evolution operator that describes the evo-
lution of the dot state ���t�� for given initial Ei and final E f

states of the electromagnetic environment within the ground
doublet is given by


E f�Uad�t��Ei�

= WEf��
Ei

Ef

D�E�e−iSB�Te−i�0
t dt��HZ+HG�Ė�t�����WEi

+ ,

�30�

HZ =
g

2
�BBP0�̂P0, �31�

HG�t� = ṘC�SO
−1 P0�̂P0 = −

eĖ

m�0
2�SO

−1 P0�̂P0. �32�

Here, the functional integral is performed over all possible
fluctuations of the bath, E�t�, each of them corresponding to
a different path RC�t� between times 0 and t. We also allowed
for the presence of an in-plane magnetic field B, small com-
pared to the level spacing of the dot, ��0. The adiabatic

displacement operators W=eip̂eE/m�0
2
=e−ip̂RC in Eq. �30�

transform the wave function of the dot to the center of mo-

tion basis, ���t��→ ��̃�t��, where the evolution is described
by Eq. �18�, projected by the projector P0 to the lowest lying
two eigenstates of H�0�, in the absence of the magnetic field.

Thus, the pseudospin evolution under a quantum electric
field is the coherent sum of classical evolutions over all pos-
sible field fluctuations weighted by the action of the decou-
pled bath SB� . We remark here that SB� is not the noninteract-
ing bath action SB but contains a correction �HB=
−e2�E�t��2 / �2m�0

2� due to the back reaction of the dot �see
Appendix B�. For a Gaussian SB� , we thus mapped the evo-
lution of the spin to the well-studied spin-boson model,
where, however, external bosonic fluctuations are coupled
both to the x and y components of the spin.36,37

To describe dephasing and spin relaxation at the fully
quantum-mechanical level, we generalized the formulas
above to the evolution of the reduced density matrix for the
pseudospin in the center of motion basis,

�̃D�t���� � 
�0�TrB�Ŵ+��t�Ŵ���0�� , �33�

where TrB stands for a trace over the bath degrees of free-
dom, ��t�=U�t���0�U+�t� is the density matrix of the com-

plete dot-bath system, and Ŵ�exp�−ip̂ · R̂C�. Note that now

R̂C=−eÊ /m�0
2 is an operator instead of a c number, and that

Ŵ=exp�−ip̂ · R̂C� acts both on the bath and on the quantum

dot. Then, spin relaxation and decay corresponds to the di-
agonal and off-diagonal components of �̃D�t����, respectively.
The initial state ��0� of the system should not affect the
dynamics at long times,38 so we will assume the dot-plus-
bath system to start at t=0 in a well defined ground doublet

and the bath in thermal equilibrium, �̃�0��Ŵ+��0�Ŵ
= �̃D�0� � �B�0�. This choice is technically convenient and
physically describes a definite initial state with slightly en-
tangled bath and dot states. Then, the evolution of �̃D�t� can
be described as

�̃D�t� = 
TK�e−i�Kdz�HZ+HG��̃D�0���B, �34�

where now z runs along the usual double branch time con-
tour K running from z+=0 to t and then back to 0, as depicted
in Fig. 7 in Appendix C, and TK is time ordering along this
contour. Here, 
¯�B denotes the average over the electro-
magnetic field fluctuations along the Keldysh contour,

� D�E�
E+�0���B�0��E−�0��e−iSB��E+�+iSB��E−�
¯ ,

where E+ and E− denote the electric field along the upper and
lower branches of the contour and satisfy the boundary con-
dition, E+�t�=E−�t�.

Unfortunately, one cannot integrate out the electric field
exactly. However, one can use the systematic diagrammatic
approach of Ref. 39 to do perturbation theory in HG�t� and
obtain the relaxation rates within a Markovian
approximation.40 The results of this calculation are presented
in the following section.

IV. RESULTS FOR RELAXATION AND DEPHASING

We are now ready to summarize the results that are ob-
tained by the formalism developed in the previous section.
Some technical details of the calculation are presented in
Appendix C. We remark here the present systematic ap-
proach confirms what had been derived within the perturba-
tive formalism developed in Ref. 23. Unlike in said work,
where numerical results for T1 were computed in a limited
set of cases, the results for T1 and T2 presented in this section
are fully analytical, which therefore allows for an explicit
analysis of the decay rate dependence with all relevant physi-
cal parameters, such as magnetic field orientation, spin-orbit
coupling or quantum dot size.

We have computed the spin relaxation �T1
−1� and dephas-

ing �T2
−1� rates of confined electrons subject to an in-plane

�renormalized� magnetic field B at an angle � with respect to
direction �100�. To fourth order in the spin-orbit coupling, we
obtain

1

T1
= 2�mx0�2��2 + �2 − 2�� sin 2���B

2 coth
�B

2kBT
A��B�

+ 2�mx0�4���2 + �2�2 + 4�2�2 cos 4��F+��B�

+ 2�mx0�4��2 − �2�2F−��B� , �35�

GEOMETRIC PHASES IN SEMICONDUCTOR SPIN… PHYSICAL REVIEW B 77, 045305 �2008�

045305-7



1

T2
=

1

2T1
+ �mx0�4��2 + �2 − 2�� sin 2��2F��B� . �36�

Here, �B=−g�B�B�, x0 is the quantum dot size �assumed
parabolic�, and the functions F± and F are defined as

F+��B� = �B
2�

−�

� d�̃

8�

A��B + �̃

2
�A��B − �̃

2
�

1 −
cosh��̃/2KBT�
cosh��B/2KBT�

,

F−��B� = �
−�

� d�̃

8�
�̃2

A��B + �̃

2
�A��B − �̃

2
�

1 −
cosh��̃/2KBT�
cosh��B/2KBT�

,

F��B� = �
−�

� d�̃

8�
�̃4A��̃�2 csch2� �̃

2KBT
�

�Re�� 1

�B − �̃ − i0+ +
1

�B + �̃ + i0+�2� ,

with the spectral function A��� of the dimensionless electric
field, ex0E /�0, defined in Appendix C. Functions F± relate to
the F1,2

K used in Appendix C by F±= �F1
K±F2

K� /2. Note that
both F+��B� and F��B� vanish for �B→0, while F−�0� re-
mains finite. Therefore, this latter part of the fourth order
contribution can be identified as the Berry phase contribu-
tion. Indeed, this expression is identical to the one we ob-
tained previously in Ref. 23. Note also that this term is iso-
tropic and does not depend on the direction of the magnetic
field, while all other second and fourth order contributions
do so for �, ��0. In the formulas above, we assumed that
the spectral functions of the components of the dimension-
less electric field ex0E /�0 are isotropic, Ax���=Ay���
=A���.

The spectral function A��� gives the density of electro-
magnetic excitations that contribute to dephasing, and it de-
pends on the specific source of electromagnetic fluctuations.
Important sources of electric field fluctuations are piezoelec-
tric phonons18 and at low magnetic fields Ohmic charge
fluctuations,23

A��� = Aph��� + A���� .

For the case of piezoelectric phonons, an estimate of the
spectral function Aph��� of the induced dimensionless elec-
tric field is outlined in Appendix D. For GaAs /GaAlAs het-
erostructures, we obtain Aph���=�3
phx0

2 /�0
2, with 
ph=2.5

�10−5 K−2 nm−2. At higher magnetic fields �frequencies�,
these fluctuations give the dominant contribution to spin re-
laxation and/or dephasing.

At low magnetic fields �low frequencies�, on the other
hand, Ohmic charge fluctuations of the electric environment
of the 2DEG near the dot are expected to dominate. For
these, the spectral function is A����=
�� /�0

2 for Fermi liq-
uid leads, with 
���e2 /h�Re�Z�, Z being the impedance of
the leads. It is rather difficult to compute the exact value of


� since it depends on the precise geometry of the leads and
one must also take into account how the equilibrium electric
field fluctuations inside the 2DEG extend to the quantum dot,
and to what extent those fluctuations can be screened. It is
not unreasonable, however, for typical sheet resistances of
102–103 � /� to assume 
��10−3–10−4.

In our calculations, we have neglected the feedback cor-
rection −e2�E�2 / �2m�0

2� that changes the action SB→SB� . In
the case of the phonon bath, the effect of this term is to make
phonons somewhat softer close to the dot. However, this
polaron-type effect should be small since the mass of the
electron is negligible compared to the atomic masses. The
feedback correction might be more important for the Ohmic
bath, but will only affect 
�, not the Ohmic character of the
bath.

Implicit in the derivation of Eqs. �35� and �36� is the
assumption that the effect of the thermal bath leads to an
adiabatic evolution of the spin in the quantum dot. In physi-
cal terms, one can anticipate that this implies a condition for
the bath temperature kBT��0, so that the dot is not heated
above the ground doublet by the bath fluctuations. More pre-

cisely, the classical adiabatic condition ṘC /x0��0 given in
Sec. II A translates in this context into the relation
�kBT�3A�kBT���0

2. For typical parameters in the case of the
Ohmic bath, this means indeed 0.2kBT��0. For the piezo-
electric phonon bath, this implies 6�T�K��1/5kBT��0, where
T�K� is the bath temperature in kelvins. Nonadiabatic correc-
tions are beyond the scope of this work, although they could
in principle be taken into account in the calculation of Ap-
pendix C.

The first �second order� term in Eq. �35� is proportional to
�BA��B� at small Larmor frequencies. Concentrating on this
term, one concludes that the relaxation and dephasing rates
vanish for �B→0.18,24,25 The second and third terms in Eq.
�36�, which are of fourth order in the spin-orbit couplings,
involve a convolution of the spectral function at frequencies
up to the temperature scale, and F−��B� does not vanish at
low fields and nonzero temperature. Therefore, the relaxation
rates saturate both for the phonon and the Ohmic baths as the
field is lowered. We remark that the sum of the terms F+ and
F− resemble the formula �Eq. �12�� anticipated in Sec. II C,
although the full quantum treatment given here is necessary
to identify precisely the functions C� and C� in Eq. �12� and
to arrive at consistent quantitative predictions.

In Fig. 4, we plot the relaxation rates induced by the
Ohmic and phonon baths separately for two different sets of
parameters. For small magnetic fields ��B�kBT �but still
above the Zeno regime�, the relaxation rates reach a clear
saturation regime, with values

T1
−1 � 2T2

−1 � 4
�kBT�5

�0
4 � x0

lSO
�4

�C4
�
2 + 2C6�kBTx0�2
�
ph

+ C8�kBTx0�4
ph
2 � , �37�

where the numerical constants equal equal C4=8�3 /15
�16.5, C6=32�5 /21�466, and C8=128�7 /15�2.58�104.

As the field is increased, the second order terms begin to
dominate. At low enough temperatures, Ohmic fluctuations
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become dominant first since their weight grows faster at low
fields than the phonon contribution. Thus, below a certain
temperature there is a window of magnetic fields in which
the relaxation rates have a scaling form characteristic of an
Ohmic bath,

T1
−1 � 2T2

−1 � �B
3 coth

�B

2kBT
.

At still larger values of the magnetic field, the phonon fluc-
tuations dominate the second order relaxation channel, and
the rates assume a “phononic” scaling form,

T1
−1 � 2T2

−1 � �B
5 coth

�B

2kBT
.

These cross overs are shown in Fig. 5 for both relaxation and
dephasing rates. The different regimes are summarized in a
“phase diagram,” which we show for typical parameters in
Fig. 6.

As noticed in Ref. 21, T1
−1=2T2

−1 up to second order in the
coupling x0 / lSO �i.e., at high fields�. This relation is violated
by the fourth order terms due to the F contribution in Eq.
�36�, but is again restored in the saturation regime, where the
fourth order term �F not considered in Ref. 21 vanishes.

For � ,��0, second order terms that dominate the high
field behavior have a strong dependence on �: T−1��2+�2

FIG. 4. Relaxation rates due to piezoelectric phonons and
Ohmic fluctuations in two scenarios, both as a function of the mag-
netic field B applied along the �100� direction. For the strengths of
Rashba and Dresselhaus spin-orbit coupling, a ratio � /�=4 is as-
sumed �Ref. 41�. In �a�, we plot the unfavorable scenario for quan-
tum information precessing, with 
�=5�10−3, lSO=1500 nm, and
a large dot x0=115 nm ��0�1 K�. In �b�, we plot the rates for
favorable conditions 
�=10−4, lSO=3000 nm, and x0=36 nm ��0

=10 K�. Lines range from a bath temperature of 100 mK �lower
rates� to 900 mK �higher rates� in steps of 200 mK. Shaded in gray
is the region T1

−1��B=−g�B�B� for which the rotating wave ap-
proximation fails and the Zeno regime sets in �see Sec. II C�. Note
the extreme dependence of relaxation rates on the specific
conditions.

FIG. 5. Total relaxation and decoherence rates for a 51 nm dot
��0=5 K� at T=100 mK. Other parameters are lSO=3 �m, � /�
=4, �=0, and 
�=10−3. Three regimes are clearly visible. In the
inset we give a polar plot of the dependence of the rates with mag-
netic field angle �. This angular dependence is negligible in the
saturated regime, and of the form T−1��2+�2−2�� sin 2� at
higher fields.

FIG. 6. �Color online� Phase diagram of the three relaxation
regimes at 
�=10−3, � /�=4, lSO=3 �m, and �=0. A window of
Ohmic fluctuations—dominated relaxation and dephasing opens up
at lower temperatures. The saturation regime in this plot is domi-
nated by phonon fluctuations, although regions exist �not shown� at
lower fields and temperatures where the saturation is mainly due to
Ohmic fluctuations.
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−2�� sin�2��. Their contribution to the relaxation rate is en-
hanced for fields along �110�, especially as � approaches �
for a fixed lSO �see Fig. 5�. This is easy to understand by
looking back at Fig. 2�b�. The relaxation of the spin occurs
due to dot displacements along directions that flip the spin,
which for spins along the �110� direction ��=3� /4� are dis-
placements along �110� itself �recall the geometric interpre-
tation as a rolling sphere�. As we see from Fig. 2�b�, such
angles are the most effective to induce spin flips, so the
relaxation and also decoherence rates increase for fields in
those directions, especially for the highly anisotropic case
���. In contrast, as is obvious from Eq. �37� and Fig. 2�b�,
at low fields the rates are dominated by the geometric term
that is independent of �.

V. ELECTRIC SPIN MANIPULATION

In the previous sections, we investigated how in the pres-
ence of spin-orbit interaction stochastic and fluctuating fields
lead to decay and decoherence of electron spin states. In the
present section, we discuss how one can use this effect in a
constructive way to control spins purely by electric fields.
For this purpose, one should displace the quantum dot which
confines the electron. Unfortunately, under realistic condi-
tions such displacements are rather small compared to lSO.
Nevertheless, a series of small closed paths can be designed
to take the spin of the confined electron to an arbitrary final
state. In this way, one can realize an all-electrical universal
single qubit gate under the realistic condition that the scat-
tering mean free path in the 2DEG �typically in the microme-
ter range� is much larger than the confinement length scale
x0. Another option that we shall discuss in this section is to
move an electron in a system of quantum dots controlled by
gate voltages, and in this way manipulate its spin state.

Closed trajectories of the electron �in a confining dot�
covering an area A induce a spin precession approximately
given by Eq. �29� around the ẑ axis, in the same way as if a
constant magnetic field was applied in this direction. In order
to induce arbitrary spin rotations, e.g., spin flips, we have to
rely on more complicated paths. An example is a path com-
posed of sum of closed loops of period Tf and area Af and
another, much slower, closed trajectory of period Ts and area
As, i.e., a spirograph type of path. One can demonstrate that
by properly choosing the relation between frequencies and
trajectories, after a long enough driving time the spin can be
driven to an arbitrary final state. The optimal relation for a

spin-flip operation is Tf /Ts=2Af / ��l̃SO
2 �. Due to the adiaba-

ticity requirement, however, the minimal spin-flip time using
this method for realistic values of the maximum displace-
ment becomes several orders of magnitude slower than cur-
rent flip times achieved using ESR techniques.3 The opera-
tion time can be reduced by using heterostructures with
larger spin-orbit couplings, such as InAs. It can also be re-
duced substantially if we substitute the effect of the fast path
component by an equivalent external static magnetic field
along the ẑ direction, in which case the technique resembles
closely previously proposed ac electric-field generalizations
of ESR techniques.9

One can, however, also use different methods to transport
a confined electron over distances comparable or greater than
the spin-orbit length lSO�3 �m. Surface acoustic waves,
e.g., have been used to move electrons over large distances
and to rotate their spins.14 Another possibility involves a ring
of several tunnel-coupled quantum dots spanning distances
comparable to lSO. The electron can then be adiabatically
shifted around the ring by appropriate time-dependent gate
voltages. As we show below, such a manipulation can result
in a large spin rotation and thus provide a completely differ-
ent principle than ESR since no resonant ac fields would be
involved. For this reason, it could be expected to enable
relatively fast coherent spin manipulation since, unlike ESR,
a single pumping cycle could be enough to induce a com-
plete spin flip.

The discussion of pumping around the ring of dots can be
reduced to sequential pumping processes between adjacent
dots. We shall therefore analyze the precession of the �pseu-
do�spin of an electron that is transferred between two dots of
sizes and separation smaller than lSO. We further assume that
a strong barrier between the dots remains present at all times
during the pumping process, and use a tight-binding approxi-
mation. In this spirit, we write the Hamiltonian of the double
dot structure as

H�t� =
p̂2

2m
+ 	

�=L,R
V��r̂� +

1

m
p̂�SO

−1 �̂ + Vext�r̂,t� , �38�

where V��r̂��V�r̂−r0
�� denotes the confining potential of the

two dots at positions r̂0
L and r̂0

R, and the potential Vext is
generated by the external gate voltages, assumed to be small.
Within the tight-binding approximation, the low energy
states of the double dot system are a linear combination of
the ground state wave functions ���0±

L � , ��0±
R �� of the isolated

dots described by the Hamiltonians

HL/R �
p̂̂2

2m
+ VL/R +

1

m
p̂�SO

−1 �̂ . �39�

In the considered limit, the SO coupling can be treated per-
turbatively, and the Hamiltonians HL/R can be partially diago-
nalized by the unitary transformation ZL/R=eiML/R, with

M� = − �r̂ − r0
���SO

−1 �̂

Z�
+H�Z� =

p2

2m
+ V�r − r0

�� −
1

mlSO
2 LzSz + O3��SO

−1 r� .

Here, lSO=
�det �SO� and Lz is the angular momentum with
respect to the center of the dot. Let us now assume that the
confining potentials V� are cylindrically symmetrical and
also that the ground states of H� are in the Lz=0 sector.
Then, the ground state of the individual dots can be approxi-
mated, to order x0

2 / lSO
2 , as

�
0�
� � � eiM���0

�� � ��� �40�

in terms of the spinor ��� and the orbital eigenstate ��0
�� of

H� with the spin-orbit coupling set to zero. This allows us to
evaluate the 4�4 matrix for the truncated H�t� and express it
as
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H�t� = �HLL HLR

HRL HRR
� , �41�

with the submatrices given by �H������= 

0�
� �H�t��
0��

� �.
Apart from a trivial overall shift of the energy, the diagonal
blocks can be written as

HLL = − HRR =
v�t�

2
�1 0

0 1
� , �42�

v�t� being the potential difference between the dots. How-
ever, spin-orbit coupling generates a spin texture for the dot
eigenstates, and results in a nontrivial spin mixing in the in
the hopping submatrix, ����,

HLR = HRL
+ = 

0��

L �H�t��
0�
R � �43�

�
�0
L�H�t���0

R�
���e−i�r̂·�SO
−1 �̂��� . �44�

where �r=rR−rL is the vector connecting the two dots. In the
second line, we used expression �40� and exploited the fact
that the integrals pick up their major contributions from the
regions r�rL and r�rR. We thus obtain

HLR �
��t�

2
� cos��� ie−i
 sin���

iei
 sin��� cos���
� ,

where �= ��SO
−1 ·�r� is essentially the tunneling distance in

units of the spin-orbit length and ��t� the spin-independent
hopping integral 
�0

L�¯ ��0
R� above. The angle 
 character-

izes the hopping direction and is defined through the relation

�r ·�SO
−1 =��cos 
 , sin 
�. The SU�2� operator e−i�r·�SO

−1 ·�

�HRL is the same we obtained in Eq. �22� for the geometric
spin precession along a straight path connecting the two dots.

Diagonalizing this Hamiltonian matrix, we obtain the in-
stantaneous eigenstates ��
n±�t��� with n=0 and n=1 corre-
sponding to the ground and first excited doublets of the
double dot structure. They are pairwise degenerate at any
time and have energies �0,�=−���t� /2 and �1,�=���t� /2,
with ���t� the splitting between the two doublets,

���t� = 
��t�2 + v�t�2. �45�

We shall now study the electron spin’s evolution within
the adiabatic approximation: we look for a solution of the
Schrödinger equation in the form �
�t��=	n,��n,��t��
n��t��.
Then, the wave function amplitudes satisfy the equation of
motion,

i�̇n,� = 	
n�,��

Heff�t�n�,n����n�,��,

Heff�t�n�,n��� = �n�n�,n��� + iv̇�� �
n�

�v
�
n����

+ i�̇�� �
n�

��
�
n���� . �46�

If the time derivatives in this expression are small com-
pared to the splitting ��, the evolution of the confined elec-
tron is adiabatic and is confined to the lowest doublet of the

double dot. Remarkably, it is possible to write down such
instantaneous ground states, satisfying the conditions

 �
0�

�� �
0��
�=
 �
0�

�v �
0��
�=0,


0+��,v� �
1


�2 + ��� − v�2
��� − v,0,− � cos �,�iei
 sin �� ,

�47�


0−��,v� �
1


�2 + ��� − v�2
�0,�� − v,�ie−i
 sin �,

− � cos �� . �48�

With this choice of basis, the time evolution is trivial in the
adiabatic approximation, and apart from an overall phase, the
wave function is simply given by

�
�t�� = �−�
0−���t�,v�t��� + �+�
0+���t�,v�t��� . �49�

Now imagine making an adiabatic sweep, with the potential
difference v going from v=−� at time t=−� to v=� at time
t=�. The above states have been chosen so that they satisfy
the initial condition �
0±�−���= �
0±

L � at t=−� and describe
an electron localized in the left potential well with �pseu-
do�spins �=±. According to the above expressions, at time
t=�, i.e., after the adiabatic potential sweep v→�, the elec-
tron will be found fully localized in the right dot and in the
following spin superposition:

�
���� = 	
���

�
0��
R �e−i�r·�SO

−1 ·����

0�
L �
�− ��� , �50�

independently of ��t�. In other words, the spin undergoes a
spin precession identical to that obtained for B=0 upon adia-
batically displacing a parabolic confining potential a distance
�r along a straight line �Eq. �22��. Although in our discus-
sion, we assumed a cylindrical symmetry for the dots, a
slightly modified version of this discussion carries over to
the case of noncylindrical potentials with a spin rotation of
comparable size. In general, however, the spin rotation is not
given by the simple expression �Eq. �50��.

The most straightforward way to build a tunable gate on
this concept would be to add a magnetic flux across a ring of
quantum dots as a tuning parameter. Alternatively, one could
use backgates on top of the heterostructure to tune the
Rashba spin-orbit coupling strengths around the ring.

VI. CONCLUSION

In this paper, we have shown that for single electrons
confined in quantum dots in a 2DEG, which is shifted adia-
batically along a path by applied or fluctuating electric fields,
the spin-orbit interaction induces pseudospin precession
within the ground state Kramer’s doublet. In the absence of
external magnetic fields, the precession depends solely on
the geometrical shape of the trajectory of the confined elec-
tron. This accumulated non-Abelian phase has marked con-
sequences for the spin relaxation and decoherence due to
electric field fluctuations. In particular, it leads to a saturation
of the relaxation rates at vanishing magnetic fields. We have
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analyzed how the properties and power spectrum of the elec-
tromagnetic fluctuations influences the spin relaxation rates.
We characterized two different spin decay regimes, domi-
nated by Ohmic or phonon-induced electric fluctuations, re-
spectively, and their crossovers as a function of external
magnetic field and temperature.

The geometric spin precession analyzed in this paper can
also be used to manipulate the spin state purely by control-
ling electric fields. We have shown that arbitrary rotations
can be achieved by moving the dot along suitable trajecto-
ries. To speed-up the process, we suggest moving the elec-
tron by adiabatic tunneling between quantum dots in multi-
dot devices.
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APPENDIX A: VARIOUS MATRIX ELEMENT RELATIONS
FOR A PARABOLIC POTENTIAL

For the parabolic quantum dot Hamiltonian �Eq. �13��, we
have the following identity:


�n�t���p̂,Ĥ�t����n�
� �t�� = �En�� − En��
�n�t��p̂��n�

� �t��

= − im�0
2
�n�t��r̂ − RC�t���n�

� �t�� ,

where r̂ is the electron position operator and �RC�t�� is the
dot displacement, assumed to be zero at t=0. Here, En� is the
eigenvalue of the instantaneous eigenstates, ��n�t��, which are

related to the eigenstates of H�0� as ��n�t��=Ŵ�t���n�. Simi-
larly, the expectation value of r̂−RC�t� reads

�En��� − En��
�n�t��r̂ − RC�t���n�
� �t��

= 
�n�t���r̂ − RC�t�,Ĥ�t����n�
� �t��

=
i

m

�n�t��p̂ + �SO

−1 · �̂��n�
� �t�� .

Combining both equations above, we obtain

− 
�n�p̂��n�
� � =

1

1 − �En� − En����
2/�0

2�SO
−1 · 
�n��̂��n�

� � .

�A1�

We made use of the fact that W�t� commutes both with p̂ and
�̂, and therefore, 
�n�t���̂��n�

� �t��= 
�n��̂��n�
� � and


�n�t��p̂��n�
� �t��= 
�n�p̂��n�

� �.
Specifically, for the ground state doublet �or lowest lying

two states�, this equation reduces to the useful identity

− P̂0p̂P̂0 = �̃SO
−1 · ����, �A2�

where ���� are usual Pauli matrices. All spin-dressing correc-

tions are contained in the matrix �̃SO
−1 , whose definition trivi-

ally follows from Eq. �A2� and simplifies to Eq. �21� in the
absence of magnetic field.

APPENDIX B: PSEUDOSPIN EVOLUTION UNDER
QUANTUM FIELDS

In this appendix, we generalize Eq. �22� obtained for an
electron confined in a parabolic well to the case where elec-
tromagnetic fields are produced by a quantum bath, which
we shall treat within the path integral formalism. We assume
that the bath is governed by Hamiltonian HB, while the cou-
pling between the bath and quantum dot is of dipolar form,

V=eÊ · r̂. We further allow for a Zeeman field B coupled to
the dot,

HD =
p̂2

2m
+ V�r̂� + HSO +

g

2
�BB · �̂ . �B1�

To combine the path integral approach with the adiabatic
approximation, we write the evolution operator of the
coupled system as

U = e−i�HD+HB+V�t = �e−i�HD+HB+V��t�t/�t, �B2�

and insert the identity operator,

1̂ = 	
E,�

Ŵ�E,��1̂D
E,��Ŵ+, �B3�

after each time slice. Here, 1̂D denotes the identity operator

acting on the dot, and Ŵ�exp�−ip̂ · R̂C�. Note that the Ŵ
=exp�−ip̂ · R̂C� acts both on the bath and on the quantum dot,

and now R̂C=−eÊ /m�0
2 is an operator instead of a c number.

In Eq. �B3�, we also made use of the fact that the electric

field operator Ê is Hermitian and one can construct a com-

plete basis from its eigenstates. However, Ê being a local
operator, every such state is infinitely degenerate. We keep
track of this internal degeneracy by the label �.

The matrix elements connecting two consecutive identity
insertions labeled by n+1 and n take the following:


En+1�n+1�Ŵ+e−i�HD+HB+V��tŴ�En�n�

= 
En+1�n+1�e−iHB�t�En�n� � WEn+1

+ e−i�HD+eEnr��tWEn
,

�B4�

where the operator WEn
�e−ip̂·RC

n
, RC

n =−eEn /m�0
2 acts now

only on the dots subspace, just as in Sec. III A 1.

Using En+1�En+�tĖn, the second term can be expanded
in �t and written as

WEn+1

+ e−i�HD+eEnr��tWEn
� 1 − i�HD − p̂ · ṘC

n +
e2En

2

2m�0
2��t .

After reexponentiating this expression, Eq. �B4� simply be-
comes

�
En+1�n+1�e−iHB��t�En�n�e−i�HD−p̂·ṘC
n��t, �B5�

where HB� =HB−e2En
2 / �2m�0

2� is effective bath Hamiltonian.
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The rest of the derivation follows the standard construc-
tion of the path integral except that we also insert the identity
operator �Eq. �B3�� before and after the evolution operator
U�t�. The evolution operator of the dot for fixed initial and
final bath states Ei and E f takes the form


E f�U�t��Ei� = �
Ei

Ef

D�E�e−iSB�WEf
T�e−i�0

t dt��HD−p̂·ṘC�t����WEi

+ .

�B6�

Here, the functional integral is performed over all possible
paths of bath states with definite E�t� compatible with the
endpoints Ei and E f, each of them corresponding to a differ-
ent path C of the displacement RC�t�. Bath paths begin at

t�=0 and end at t�= t. The weight e−iSB� �e−iSB��E�t��

��D���t��e−iSB��E�t�,��t�� comes from the prefactor in Eq. �B5�
and involves the effective bath Hamiltonian HB� . Its depen-
dence on the extra quantum numbers ��t� is already inte-
grated out. Finally, the operator T�e−i¯� inside the integral is
acting only on the quantum dot and has exactly the same
form as Eq. �18� for a classical field.

Since electric field fluctuations are assumed to be slow
and the magnetic field is small, the time ordered operator in
Eq. �B6� can be approximated by its adiabatic form. Project-
ing this operator to the ground state subspace of H with B
=0, we have

HD − p̂ · ṘC�t�� → P0HDP0 − P0p̂P0 · ṘC�t�� . �B7�

After using identity �A2� of the previous appendix, this ex-
pression reduces to Eq. �30�, given in the main text.

APPENDIX C: DIAGRAMMATIC CALCULATION OF
RELAXATION AND DECOHERENCE RATES

We can generalize the calculation of the previous appen-
dix to compute the evolution of the center of mass reduced
density matrix, defined as in Eq. �33�,

�̃D�t���� � 
�0�TrB�Ŵ+��t�Ŵ���0�� . �C1�

We use the Schrödinger representation and insert the identity
operator �Eq. �B3�� for both the forward and backward
propagations in the expression of the full density matrix
��t�=e−iHt��0�eiHt. This leads to the following expression
�recall definitions �31� and �32��:

�̃D�t� =� D�E�e−iS̃B�TK�e−i�Kdz�HZ+HG��̃�0�� ,

where �̃�0�=Ŵ+��0�Ŵ denotes the initial center of mass
density matrix. The integration should be performed on the
complex contour, z= �0→ t→0�, and TK denotes the time
ordering along this contour.

We define an operator describing the propagation of �̃D
between different times,

�̃D�t��1�2
= 	

�1��2�

��t,0��1�2←�1��2�
�̃D�0��1��2�

. �C2�

In perturbation theory in the geometric coupling HG between
the dot and the electric field, we can construct a correspond-
ing Dyson equation for the propagator �,

��t,0� = �0�t,0� + �
0

t

dt1dt2�0�t,t1���t1,t2���t2,0� ,

where

�0�t,0��1�2←�1��2�
= 
�1�e−itHZ��1��
�2��e

itHZ��2�

is the bare propagator. In the following, we shall assume that
the initial center of mass density matrix factorizes as �̃�0�
= �̃D�0���̃bath�0�, where �̃bath�0� represents some density
matrix of a noninteracting Gaussian heat bath.

Then, the “self-energy” ��t� has an expansion in Feyn-
man diagrams along the K contour, with vertices at branch
s=± corresponding to terms −siHG, in the expansion �see
Fig. 7�. Differentiating with respect to t and defining the
Liouvillian as L0�̃D�t�� d

dt�0�t��D�0�= i��̃D�t� ,HZ�, one ar-
rives at the master equation

�̇̃D�t� = L0�̃D�t� + �
0

t

��t − t���̃D�t�� .

This equation can be simplified under the Markovian
approximation,40 where we assume that relaxation and
dephasing are slow and therefore replace �̃D�t��
�eL0�t�−t��̃D�t� in the second integrand to yield

�̇̃D�t� = L0�̃D�t� + ��̃D�t� ,

with the Bloch-Redfield tensor defined as

� = �
0

�

��t�e−L0tdt .

Relaxation and dephasing times T1 and T2 are then trivially
related to this tensor � as40

T1
−1 = �↑↑←↓↓ + �↓↓←↑↑, �C3�

T2
−1 = − Re �↑↓←↑↓. �C4�

A “rotating wave approximation” is implicit in these rela-
tions that requires T1

−1, T2
−1��B in our particular case �see

Sec. II C�.
Let us now perform a calculation of T1 and T2 to fourth

order in the coupling between the dot and the electromag-
netic field for a small quantum dot with negligible spin

dressing ��̃SO=�SO and B̃=B�. Assuming an in-plane mag-
netic field at an angle � with respect to the direction �100�,
we have
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HZ =
g

2
�BB�cos ��̂x + sin ��̂y� .

The eigenvalues of HZ are ±�B /2, where �B�−g�BB. In the
particular doublet basis which diagonalizes HZ, we can write
HZ=−�̂z�B /2, and �0 equals

�0�t� = eL0t =�
1 0 0 0

0 e−i�Bt 0 0

0 0 ei�Bt 0

0 0 0 1
� .

with the indices ordered as �↑↑,↑↓,↓↑,↓↓��. This basis is ro-
tated with respect to the original one by an operator UR

=exp�− i
2 �sin ��̂x−cos ��̂y��, so that our vertex −isHG in

branch s=± reads in this basis

− isHG = − is 	
�,	=x,y

ṘC��ts�
SO�	
−1 UR�̂	UR

+

= − is 	
�=x,y

	=x,y,z

��
	 �̂	

ṘC��ts�
x0

,

where ��= ���
x ,��

y ,��
z �= �−sin ���

� , cos ���
� ,��

� � and the rel-
evant transverse and parallel dimensionless couplings, ��

�

and ��
�, are defined by

��x
� �y

�

�x
�

�y
� � = mx0�− � cos � + � sin � � cos � − � sin �

− � cos � − � sin � � cos � + � sin �
� .

�C5�

For compactness, we shall use the vector notation ��,�

���x
�,� ,�y

�,�� in the rest of this appendix. The corresponding
vertex matrices V+�t�=−iHG � 1 and V−�t�= i1 � HG

T at time t
at branch s=± that enter the expansion of ��t� are denoted
by blue dots in Fig 7 and read

V+�t� = 	
� �

− i��
� 0 ei���

� 0

0 − i��
� 0 ei���

�

− e−i���
� 0 i��

� 0

0 − e−i���
� 0 i��

�
�ṘC��t+� ,

V−�t� = 	
� �

i��
� e−i���

� 0 0

− ei���
� − i��

� 0 0

0 0 i��
� e−i���

�

0 0 − ei���
� − i��

�
�ṘC��t−� .

In this notation, we have the following relation for the nth
order contribution to Bloch-Redfield tensor � in the dot-bath
coupling V�t��V+�t�+V−�t�,

��n� = �
0

�

dt2 ¯ dtn
V�tn��0�tn − tn−1� ¯ V�0��0�0 − tn��B.

�C6�

Here, tn� ¯ � t2, i.e., a time-ordered integral over the inter-
nal times is implicit, and the bracket 
¯�B denotes averaging

over the bath fields ṘC�, i.e., pairwise contractions for a non-
interacting �Gaussian� bath. Only connected contributions
must be taken into account in the averaging, and all odd n
contributions average to zero. The n=2 and n=4 diagrams
are represented in Fig. 7. The n=4 case has two types of
distinct contractions that correspond to contracting the verti-
ces at t1=0 and t4 with each other and with internal vertices,
respectively �represented in two separate rows in Fig. 7�.
Each contraction gives a noninteracting bath Green’s func-
tion defined in the Heisenberg picture as

-1-

FIG. 7. Diagrams involved in the evaluation of the relaxation times. The 4�4 self-energy matrix � that dresses the propagator � is
calculated to fourth order in the dot-bath coupling �blue dots�. Contractions of bath fields in ��4� can be classified in two distinct types �upper
and lower rows of diagrams�. Times �0,�1 ,�2 , t� are ordered, and �1, �2 must be integrated.
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G�	
s�,s�t� − t� = − i

1

x0
2 
ṘC��ts�

� �ṘC	�ts��B

= − i
1

x0
2TrB�TKR̂

˙
C��ts�

� �R̂˙ C	�ts��B�0��

= − i
1

x0
2 � D�E�e−iS�˜ BṘC��ts�

� �ṘCu�ts� .

Here once more, s, s�=± refer to the time branch, and the

time evolution of the operators R̂
˙

C��t� in the first line is gov-
erned by HB� . For simplicity, we assume an isotropic bath so

that G�	
s�,s=��	Gs�,s.

In the literature, one commonly denotes in the off-
diagonal components as G��G+− and G��G−+. The spec-
tral function is related to these as A� i�G�−G��, while the
Keldysh propagator is given by GK�G�+G�. Since E�t� is
a real bosonic field, in equilibrium, we have

G���� = G��− �� = − i�1 + nB����AṘ��� ,

GK��� = − i coth� �

2kBT
�AṘ��� , �C7�

where nB��� is the Bose distribution, and AṘ��� is the spec-

tral function of the rescaled bath field Ṙ /x0. This spectral
function can be easily related to the spectral function A��� of
the dimensionless electric field, ex0E /�0 as AṘ���=�2A���.
Both spectral functions are odd in �.

The second order results for T1 and T2 take the known
form33,34

T1
�2�−1 = 2����2iGK��B� , �C8�

T2
�2�−1 =

1

2
T1

�2�−1 + ����2iGK�0� . �C9�

The fourth order contributions to � are obtained by summing
all corresponding diagrams. They are rather involved, but
have the general structure

T1,2
�4�−1 = �

−�

�

d�1d�2K1,2��1,�2�iG���1�iG���2� .

�C10�

The kernel K� contains delta functions of �1, and �2. In Fig.
8, we plot the lines along which these delta functions pick up
their contribution for relaxation and dephasing. We can dis-
tinguish two types of lines. The diagonal lines in the second
and fourth quadrants lead to convergent integrals since
G����G��−�� goes exponentially to zero at large values of
�. Diagonal lines with positive slope and also horizontal and
vertical lines across the origin cancel out exactly in K1. The
remaining horizontal and vertical lines exhibit ultraviolet di-
vergencies and give therefore cutoff dependent prefactors
that multiply GK�±�� and GK�0�. These terms can thus be
reabsorbed in the second order result by simply renormaliz-
ing the couplings ��,�. The final result can then be expressed
in terms of these renormalized constants as

T1
−1 = 2����2iGK��B� + 2����2����2iF1

K��B�

+ 2��� · ���2iF2
K��B� , �C11�

T2
−1 =

1

2
T1

−1 + ����2iGK�0� + ����4iF��B� , �C12�

where the F functions are given by the following convolu-
tions of G����,

FIG. 8. The kernels K1 and K2 involved in the result for T1,2
�4� �Eq. �C10�� for generic values of the coupling constants ��,�. A resolving

imaginary part �=0.01�B was used to make the delta functions visible.
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F1,2
K ��� = F1,2

� ��� + F1,2
� �− �� ,

F1
���� = �

−�

� d��

2�
iG���

2
− ���iG���

2
+ ���Re�� 1

�

2
− �� − i0�

2

+ � 1

�

2
+ �� + i0�

2

� ,

F2
���� = �

−�

� d��

2�
iG���

2
− ���iG���

2
+ ���Re�2

1

�

2
− �� − i0

1

�

2
+ �� + i0� ,

F��� = �
−�

� d��

2�
iG��− ���iG�����Re�� 1

� − �� − i0
+

1

� + �� + i0
�2� . �C13�

The Green’s functions G� and G� can be expressed in terms
of the spectral function A��� of the dimensionless electric
field ex0E /�0, introduced below Eq. �C7�,

iG���� = �1 + nB�����2A��� ,

iGK��� = coth� �

2kBT
��2A��� . �C14�

Inserting these last equations into expression �C13�, one ar-
rives at the results in Eqs. �35� and �36�. The spectral func-
tion A��� for electromagnetic fluctuations generated by pi-
ezoelectric phonons is computed in the next appendix.

APPENDIX D: PHONON BATH PROPERTIES

Let us consider the fluctuating electric field induced by
the phonons in the sample holding the quantum dot. The
electric field acting on the confined electron is the gradient of
the potential generated by these phonons, eE�=
−��Uph�x̂ , ŷ�. It has two contributions, one from a longitudi-
nal mode and another from two transverse modes,

Uph =
1


V
	
q,


eirqMq,
bq,

+ + H.c., �D1�

with 
= l , t1 , t2 indicating the mode. The coupling to the lon-
gitudinal is given by42

Mq,l
2 =

e2h14
2

2�vlq
�3qxqyqz

q3 �2

J�qzdw� ,

while the coupling to the transverse mode is

Mq,t1
2 + Mq,t2

2 =
e2h14

2

2�vtq
J�qzdw�

qx
2qy

2 + qy
2qz

2 + qz
2qx

2 − 9qx
2qy

2qz
2/q2

q5 .

Here, q��q�, V is volume, and dw is the depth of the quan-
tum well where the two-dimensional electron gas is confined.
The function J�x�= �1−x2�,  being the Heaviside func-
tion, qualitatively accounts for the truncation of the phonon
spectrum out of the 2DEG plane.21 The physical origin of
this cutoff is that phonons having a wave-vector component
larger than �1 /dw along the z direction cannot couple effi-

ciently to the confined electron since their wave function
oscillates too quickly. The density �, the sound velocities vl
and vt, and the piezoelectric constant h14 in the expressions
above are material-dependent parameters, which depend on
the particular heterostructure used to define the quantum dot:
for a typical GaAs /AlGaAs heterostructures �=5.3
�103 kg /m3, vl=4.73�103 m /s, vt=3.35�103 m /s, and
h14=1.4�109 V /m.

The noise power S��t�− t�= 
E��t−��E��t+��Be2x0
2 /�0

2 of the
normalized electric field can be expressed as

S��t� =
x0

2

V�0
2	

q,

qi

2Mq,

2
„
bq,


+ �t�bq,
�0�� + 
bq,
�t�bq,

+ �0��… .

It can be checked that Ex and Ey are indeed independent in
this model.

Using 
bq�t�bq
+�0��=e−i�qt�1+nB��q��, 
bq

+�t�bq�0��
=ei�qtnB��q�, and �q=vlq, we see that the only dependence
on the orientation of the wave vector vector q appears
through M. We can therefore introduce spherical coordinates
in the continuum limit and integrate with respect to the an-
gular variables. For the longitudinal phonons, this yields

Sl
��t� =

x0
2e2h14

2

�0
2�vl

3

210�
�

0

� dq

2�
jl�qdw�q3�ei�q,ltnB��q,l�

+ e−i�q,lt�1 + nB��q,l��� , �D2�

where the function jl�qdw� above comes from the truncation
of the phonon spectrum and is given by

jl�x � 1� =
− 35 + 135x2 − 189x4 + 105x6

16x9 ,

jl�0 � x � 1� = 1. �D3�

The two transverse modes give a similar contribution,

St
��t� =

x0
2e2h14

2

�0
2�vt

4

210�
�

0

� dq

2�
jt�qdw�q3�ei�q,ttnB��q,t�

+ e−i�q,tt�1 + nB��q,t��� , �D4�

with
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jt�x � 1� =
105 − 300x2 + 294x4 − 140x6 + 105x8

64x9 ,

jt�0 � x � 1� = 1. �D5�

The cutoff functions jl�x� and jt�x� play a role similar to
 �1−x2�, but have algebraic tails: jl�x��x−3 for large x,
while jt�x��1 /x. The phonon spectrum is defined as usual
by �q,
=v
q.

Taking the Fourier transform of the correlation functions
above, we can identify the spectral function Aph���,

S���� = �1 + nB����Aph��� , �D6�

Aph��� =
x0

2

�0
2
ph�

3,


ph =
e2h14

2

210��
� 3

vl
5 jl� �

�w,l
� +

4

vt
5 jt� �

�w,t
�� , �D7�

where �w,l�vl /dw and �w,t�vt /dw. For frequencies smaller
than the cutoffs �w,l, we obtain 
ph=2.5�10−5 K−2 nm−2 for
GaAs /AlGaAs quantum wells. Note that in this calculation
we neglected the lateral size of the dot. That provides an
additional cutoff for the in-plane phonon momentum for
larger values of the frequency �.
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